Monopsony Power and Creative Destruction

VfS Annual Conference 2024, September 18

Isabella Maassen, Filip Mellgren, Jonas Overhage

IIES - Institute for International Economic Studies

Introduction

How do income taxes shape labor market power, output and growth?

Key trade-off:

- Monopsony \rightarrow markdown distribution
 - Static misallocation (lower current output)
 - innovation incentives (higher output growth)

Role of (progressive) income taxes:

• progressive taxes affect labor supply elasticities under monopsony

- Productivity growth in developed countries:
 - slowdown over last decades broadly
- One approach in existing research: product market power
 - Aghion et al., 2023, De Ridder, 2022
- We incorporate labor market power: Monopsony
 - Studied e.g. by Berger et al., 2022, Bachmann et al., 2022
 - Focus in existing literature: static misallocation
 - This paper: incorporate long-run growth implications

- Framework builds on existing firm dynamics & growth models:
 - Klette and Kortum, 2004, Aghion et al., 2023
 - Growth model of creative destruction and product market power
- To this, we add:
 - (1) discrete choice workplaces & home production: Card et al., 2018
 - (2) income taxation: Borella et al., 2022
- Note on monopsony:
 - 'New classical monopsony' as in Card et al., 2018, Manning, 2021
 - Wage setting power: upward sloping labor supply curve facing firm

Model Setup

- Mass \mathcal{L} workers, no savings
- Choose to work (g = e) at firm $j \in \{1, ..., \mathcal{J}\}$, or at home (g = u)
- Utility of worker *o*, choosing to work at firm *j*:

$$u_o = \beta \bar{u}(C_j) + \xi_{og} + (1 - \sigma) \varepsilon_{oj}. \quad \xi_{og}, \varepsilon_{oj} \sim EVT1$$

• From logit-choice then follows labor supply given net wage:

$$L_j(W_j) = z W_j^{rac{eta}{1-\sigma}}, \quad ext{Details}$$

• where z includes the option value of all wages and the outside option

Government, Taxes

• Tax function as in Borella et al., 2022, but here paid by firm:

$$T\left(\frac{W_j}{\bar{W}}\right) = \left(\frac{1}{1-\lambda}\frac{W_j^{\tau}}{\bar{W}^{\tau}}\right)^{\frac{1}{1-\tau}} - 1$$

- λ governs average tax level, τ progressivity
- 1- au is the elasticity of post tax income w.r.t pre tax income
- Reference wage: $\bar{W} = \sum_j L_j W_j / \sum_j L_j$
- The budget balances, government spending G per household:

$$\mathcal{L}G = \sum_{j} T(W_{j}/\bar{W})W_{j}L_{j}$$

- Gross wage: $W^{G} = (1 + T(W_{j}/\bar{W}))W_{j}$
- Labor supply elasticity wrt the gross wage W^G :

$$\frac{\partial \log(L_j)}{\partial \log(W^G)} = \underbrace{\frac{\beta}{1-\sigma}}_{\text{preferences}} \underbrace{(1-\tau)}_{\text{policy}}$$

- This is the elasticity relevant to the firm
- Can be directly affected by changing $\boldsymbol{\tau}$

(1)

- Final goods production: $Y = \exp \int_0^1 \ln(q_i y_i) di$.
 - q_i is quality level of good i
- Intermediate good demand: $p_i y_i = PY$, normalize $P \equiv 1$.
- Competition: Details
 - Bertrand competition in product lines, quality breaks ties.
 - Quality leader in line *i* is j(i), follower j'(i)
 - Leader's quality is one γ -step above follower's: $q_{j(i)} = \gamma q_{j'(i)}$
 - Nash equilibrium: Leader fulfills line demand, $p_i = \gamma m c_{j'(i)}$.
- Intermediate goods production: $y_{i,j(i)} = s_{j(i)} l_{i,j(i)}$.
- Key link: $mc_{j'(i)}$ depends on firm size due to monopsony! Details
- Firm types: Top 10% with productivity s_h , remaining with s_l

Dynamic Block

- Given line-level solutions:
 - $n_{j,t}$: number of product lines where firm j is quality leader
 - this is firms' only state variable, L_{jt} & W_{jt} follow it
 - Markups, markdowns function of firm size Details
- The dynamic problem is how much to invest in research:
 - Stock of lines develops according to: $n_{j,t+1} = (1 \chi_t)n_{j,t} + x_{jt}$
 - Aggregate rate of creative destruction: $\chi_t = \sum_i x_{jt}$
 - Cost of drawing x_t new lines: $R(x_{jt}) = \psi Y x_{jt}^{\Phi}$.

- Focus on a balanced growth path
 - Constant \mathcal{J}, χ , constant Top 10% concentration h
 - Quality growth $Q_{t+1}/Q_t = g = \gamma^{\chi}$
 - Y_t, mc_{jt}, W_{jt} all grow at g & z at $g_z = g^{-rac{eta}{1-\sigma}}$
- Restate firm problem, relative to output Y:

$$egin{aligned} & v_j(n_j) = \max_{n'_j} n_j - (1 + T(W_j/ar{W}_t))W_jL_j \ & -\psi(n'_j - (1-\chi)n_j)^{\Phi} +
ho v(n'_j), \end{aligned}$$

• W_j , L_j are functions of n_j , which is constant on BGP

Output Decomposition

• Define
$$S \equiv \int_0^1 s_{j(i)} di$$
, $L \equiv \sum_j L_j$

$$Y = \exp \int_0^1 \ln(q_i y_i) di = Q \exp \int_0^1 \ln(s_{j(i)}) di \exp \int_0^1 \ln(l_{j(i)}) di$$
$$= Q \cdot S \cdot M \cdot L \qquad \text{Details}$$

- Where $M = (1 \frac{CV^2}{2})$ measures misallocation from price dispersion
- Decomposition of present value, accounting for g:

$$PV\left\{\frac{Y}{\mathcal{L}}\right\}_{t=0}^{\infty} \approx \underbrace{\frac{Q_0}{1-\rho(1+g)} \cdot S \cdot M}_{TFP} \cdot L$$

- Tension between static- and dynamic efficiency. Higher h:
 - Increases S, but also R&D spending $X = Y \sum_{i} \psi(\chi n_i)^{\phi}$ for given χ

Quantitative Results

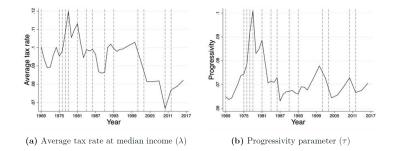
• Match U.S. economy 1954 – 2007: Details

Definition	Data	Model
Average Markup	1.24	1.24
Growth rate	1.078%	1.078%
R&D spending (% of GDP)	2.45%	6.06%
Share of Output, top 10% firms	75.59%	75.65%
Labor Market Participation	83.4%	83.4%
Profit Share	5.45%	0.07%
Top 10% wage premium	21%	21.2%

- Profit share partially rolled into R&D spending
- λ,τ well below revenue maximizing values

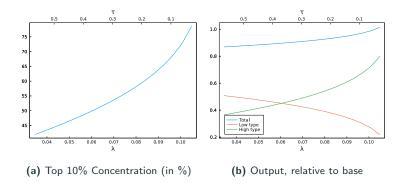
Income Taxation

• Tax level λ and progressivity τ from Borella et al., 2022



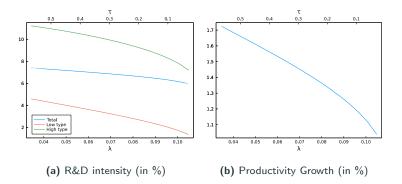
- Macnamara et al., 2024 suggest tax cuts should increase TFP growth
- TFP growth in data not high(er) post tax cuts, according to model:
 - $\lambda \downarrow$ has no effect on *h*, slightly increases R&D for all firms
 - $\tau \downarrow$ increases labor elasticity, increases *h*, decreases (small) firm R&D

- Before: Little effect from historical reforms
- Now: Show that tax regime can strongly affect growth
- To discipline this exercise, we fix todays G at its base level
- Increasing $\lambda,$ decreasing τ makes taxes less progressive
- Concentration (almost) entirely from τ , through labor elasticity



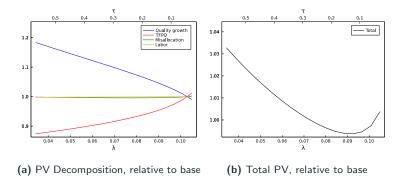
- Concentration increases as τ decreases (labor elasticities increase)
- Note: Higher λ decreases Output
- Effect from τ (higher S) dominates, Output increases overall

Dynamic Results



- R&D by large firms increases, but not in line with Output increases
- Small firm R&D declines strongly
- more concentrated R&D also less efficient
- strong decline in productivity growth

Present Value Decomposition



- Main channels: Quality growth versus Static TFPQ
- Present value maximized in low base high progressivity regime
- PV U-Shape, but S capped at h = 1 (requires regressive $\tau < 0!$)

- Contribution:
 - Importance of labor supply elasticities for output, wages and growth
 - Link between income taxation and supply elasticities and those outcomes
- Omitted in this presentation
 - Detailed results w.r.t markups, markdowns and wages
 - Effect of preference changes
 - Decomposition of historical tax reform(s)

References

References

Aghion, P., Bergeaud, A., Boppart, T., Klenow, P. J., & Li, H. (2023). A theory of falling growth and rising rents. *Review of Economic Studies*, *90*(6), 2675–2702.

 Autor, D., Dorn, D., Katz, L. F., Patterson, C., & Van Reenen, J. (2020). The Fall of the Labor Share and the Rise of Superstar Firms*. The Quarterly Journal of Economics, 135(2), 645–709. https://doi.org/10.1093/qje/qjaa004

Bachmann, R., Bayer, C., Stüber, H., & Wellschmied, F. (2022). Monopsony Makes Firms Not Only Small but Also Unproductive: Why East Germany Has Not Converged.

References ii

- BEA. (2024a). Corporate profits after tax (without iva and ccadj) [cp] [Retrieved from FRED, Federal Reserve Bank of St. Louis].
- BEA. (2024b). Government current expenditures [gexpnd] [Retrieved from FRED, Federal Reserve Bank of St. Louis].
- Berger, D., Herkenhoff, K., & Mongey, S. (2022). Labor Market Power. American Economic Review, 112(4), 1147–1193. https://doi.org/10.1257/aer.20191521
- BLS. (2024a). Labor force participation rate 25-54 yrs. [Ins11300060] [Retrieved from FRED, Federal Reserve Bank of St. Louis].
- BLS. (2024b). Private nonfarm business sector: Total factor productivity [mfpnfbs] [Retrieved from FRED, Federal Reserve Bank of St. Louis].

References iii

Borella, M., De Nardi, M., Pak, M., Russo, N., & Yang, F. (2022). The importance of modeling income taxes over time. u.s. reforms and outcomes (Working Paper No. 30725). National Bureau of Economic Research. https://doi.org/10.3386/w30725

Card, D., Cardoso, A. R., Heining, J., & Kline, P. (2018). Firms and labor market inequality: Evidence and some theory. *Journal of Labor Economics*, *36*(S1), S13–S70.

- De Ridder, M. (2022). Market Power and Innovation in the Intangible Economy. *Working Paper.*
- Klette, T. J., & Kortum, S. (2004). Innovating Firms and Aggregate Innovation. *journal of political economy*.

Macnamara, P., Pidkuyko, M., & Rossi, R. (2024). Marginal tax rates and income in the long run: Evidence from a structural estimation. *Journal of Monetary Economics*, *142*, 103514. https://doi.org/https://doi.org/10.1016/j.jmoneco.2023.09.001

Manning, A. (2021). Monopsony in labor markets: A review. *ILR Review*, 74(1), 3–26. https://doi.org/10.1177/0019793920922499
Standard & Poor's. (2020). Compustat dataset.
Wong, H. C. (2023). *Understanding high-wage firms* (tech. rep.). Mimeo.
World Bank. (2024). Research and development expenditure (% of gdp) gb.xpd.rsdv.gd.zs [Retrieved from World Bank Open Data]. https://data.worldbank.org/indicator/GB.XPD.RSDV.GD.ZS? locations=OE-US

Appendix

Labor Supply: details

•

Using
$$D_e = \sum_{k=1}^{\mathcal{J}} W_k^{\frac{1}{1-\sigma}}$$
 and $D_u = (\omega Y)^{\frac{\beta}{1-\sigma}}$:
 $P(g = e) = \frac{D_e^{1-\sigma}}{D_e^{1-\sigma} + D_u^{1-\sigma}}$
 $P(j|g = e) = \frac{\exp(\beta \frac{\log W_j}{1-\sigma}}{D_e} = \frac{W_j^{\frac{\beta}{1-\sigma}}}{D_e}$
 $P(g = e)P(j|g = e) = \frac{W_j^{\frac{\beta}{1-\sigma}}}{D_e^{\sigma}(D_e^{1-\sigma} + D_u^{1-\sigma})}$

which implies:

$$L_{j}(W_{j}) = \mathcal{L}P(W_{j}) = \mathcal{L}\frac{W_{j}^{\frac{\beta}{1-\sigma}}}{\left(\sum_{k=1}^{\mathcal{J}} W_{k}^{\frac{\beta}{1-\sigma}}\right)^{\sigma} (\omega Y)^{\beta} + \sum_{k=1}^{\mathcal{J}} W_{k}^{\frac{\beta}{1-\sigma}}}$$

GO BACK

- There are other equilibria, in which j' threatens price $< mc_{j'}$
- This feature exists in all Klette-Kortum type models
- Competition is in prices, firms commit to produce by setting price
 - Is this a crazy assumption with our increasing marginal cost?
 - Recall that lines are atomistic....
 - ... and that acquiring them is costly!
 - Producing in a single additional line has little of effect on cost
 - In addition, acquiring a line and then not producing in it is clearly not optimal

GO BACK

Note on marginal costs

• Firm-level employment:
$$L_j = \frac{Y_j}{s_i}$$
,

• Firm-level output:
$$Y_j = \int_0^{n_j} y_i di = \int_0^{n_j} \frac{Y}{\gamma m c_{j'(i)}} di.$$

 On BGP, every firm faces the same distribution of 'followers' marginal costs.

• Therefore,
$$Y_j = \int_0^{n_j} \frac{Y}{\gamma m c_{j'(i)}} di = \frac{Y}{\gamma m} n_j$$
, where $m^{-1} \equiv \int_0^1 \frac{1}{m c_{j'(i)}} di$

• Wage:
$$W_j = \left(\frac{L_j}{z}\right)^{\frac{1-\sigma}{\beta}} = \left(\frac{Y_j}{s_j z}\right)^{\frac{1-\sigma}{\beta}}$$

• Recall
$$z \equiv \frac{\mathcal{L}}{D_e^{\sigma}(\bar{W}Y)^{\beta} + D_e}$$

- Production costs: $C(Y_j) = (1 + T(W_j(Y_j)/\bar{W}))W_j(Y_j)L_j(Y_j)$
- Marginal cost of increasing production: $mc_j = C'(Y_j)$.

GO BACK

Markups and Markdowns

- From line-level equilibrium: $p_i = \gamma m c_{j'(i)}$
- Line-level markups p/mc thus depend on leader, follower:

$$\mu_{j(i)j'(i)} = \gamma \frac{mc_{j'(i)}}{mc_{j(i)}}$$

• Firm-level markups additionally a function of $m = \left(\int_0^1 m c_{j(i)}^{-1} di\right)^{-1}$

$$\mu_j \equiv \frac{\int_0^{n_j} y_i p_i di}{mc_j \cdot \int_0^{n_j} y_i di} = \frac{\gamma m}{mc_j}$$

• Gross wage markdown is then a function of markup, taxes:

$$\frac{W_j \cdot \left(1 + T\left(\frac{W_j}{W}\right)\right)}{\gamma m s_j} = \frac{1}{\mu_j} \cdot \frac{\frac{\beta}{1 - \sigma}}{1 + \frac{\beta}{1 - \sigma} + \frac{\tau}{1 - \tau}}$$
Go back

• Final output is spent on private consumption *C*, government consumption *LG*, research spending *X*, and rents *R*.

1.
$$X = Y \sum_{j} \psi(n'_{j} - (1 - \chi)n_{j})^{\phi}$$

2. $C = \int_{o} W_{o}$
3. $R = \sum_{j} (Y - (1 + T(W_{j}/\bar{W}))L_{j}W_{j} - Y\psi(n'_{j} - (1 - \chi)n_{j})^{\phi})$

• Growth rate depends on aggregate rate χ of creative destruction:

$$\chi = \sum_j x_j, \quad g = \gamma^{\chi}.$$

- Outer loop: Guess J_{guess}
- Inner loop: Fully solve model given J_{guess}
- Compute: $V_{\text{entry}} = \frac{\alpha \tilde{v}_h(n_h) + (1-\alpha) \tilde{v}_l(n_l)}{1-\rho}$
- Outer Check: |V_{entry} entry cost|

Back to results

Algorithm, Inner Loop

Inner loop: Guess h_{guess} , $\left(\frac{Y}{m_z}\right)_{guess}$ • Compute $n_h = \frac{h_{guess}}{L}, n_l = \frac{1 - h_{guess}}{L}$ • Get $w_j = \left(n_h \left(\frac{Y}{mz}\right)_{guess} \frac{1}{\gamma s_i}\right)^{\frac{1-\sigma}{\beta}}$ and $\bar{W} = f_w(h, w_h, w_l)$ • $mc_j = f_{mc} \left(n_j, s_j, \frac{Y}{mz}, \bar{W} \right)$ and $m = \left[\frac{h}{mc_h} + \frac{1-h}{mc_l} \right]^{-1}$ • $D_e = J_h w_h^{\frac{\beta}{1-\sigma}} + J_I w_I^{\frac{\beta}{1-\sigma}}$ • Find Y such that $\left(\frac{Y}{mz}\right)_{guess} = \frac{Y^{1+\beta}\omega D_e^{\sigma} + YD_e}{mLs}$ • $D_0 = (\omega Y)^{\beta}$ • $z = \frac{Ls}{D_0 D_0^{\sigma} + D_i}$, $L_i = w_i^{\frac{p}{1-\sigma}} z$ Inner Check: $\left|n_{h}^{\phi-1}(mc_{l}-\gamma m)-n_{l}^{\phi-1}(mc_{h}-\gamma m)\right|+\left|mc_{h}^{h}mc_{l}^{1-h}-\frac{Q}{\gamma}\right|$

• Solve for
$$\chi \in (0,1)$$
 using $\frac{mc_j - \gamma m}{\gamma m} \frac{Y}{\psi \phi Q} \frac{1}{n_j^{\phi-1}} = \chi^{\phi-1} \frac{\rho-1}{\rho} - \chi^{\phi}$

Back to results

Calibration Details

Parameter	Value	Moment	Moment source
β	16.21	Top 10% Output share	Computestat: Standard & Poor's, 2020
σ	0.02	Top 10% Wage Premium	Wong, 2023
ω	0.69	Labor Market Participation	BLS, 2024a, 1986 – 1999 average
ψ	2.43	TFP growth rate	BLS, 2024b, 1954 – 2007 average
ϕ	1.47	R&D Spending (% of GDP)	World Bank, 2024, 1996
γ	1.23	Average Markup	Autor et al., 2020
ζ	0.01	Profit share	BEA, 2024a, 1986 – 1999 average

Parameter	Value	Source
λ	0.103	Borella et al., 2022, 1969 – 1981 average
au	0.078	Borella et al., 2022, 1969 – 1981 average
Sh	1.49	Compustat: Standard & Poor's, 2020, s_h/s_l , 1954 – 2007 average
η	0.32	BEA, 2024b, G/Y , 1969 – 2007 average

Back to calibration

Decomposition details

$$Y = Q \cdot \exp \int_0^1 \ln s_{j(i)} di \cdot \exp \int_0^1 \ln l_i di$$

$$\approx Q \cdot \exp \int_0^1 \ln s_{j(i)} di \cdot \left(\ln \bar{l} + \int_0^1 \frac{1}{l_i} (l_i - \bar{l}) - \frac{1}{2\bar{l}^2} (l_i - \bar{l})^2 di \right)$$

$$= Q \cdot S \cdot (1 - \frac{CV^2}{2}) \int_0^1 l_i di$$

$$= \underbrace{Q \cdot S \cdot (1 - \frac{CV^2}{2})}_{TFP} \cdot \sum_{j \in \mathcal{J}} L_j$$

 $Q \cdot S \cdot M \cdot L$, where *M* follows from price/markup dispersion:

$$M = \left(1 - \frac{CV^2}{2}\right) = \left(\frac{3}{2} - \frac{\mathbb{E}\left(\frac{1}{\left(s_j m c_{j'}\right)^2}\right)}{2 \cdot \mathbb{E}\left(\frac{1}{s_j m c_{j'}}\right)^2}\right)$$

Back to decomposition